Network-in-Network Implementation using TensorFlow

Introduction In this Lab, we will be implementing Network In Network¬†[1] where its purpose is to enhance model discriminability for local patches within the receptive field. Conventional convolutional layers uses linear filters followed by a nonlinear activation function. The downside of the conventional method is the local receptors are too simple and doesn’t project local […]

Read more "Network-in-Network Implementation using TensorFlow"

Force Alignment using HMM 2

This is the continuation of the post before. This discussion on this post is: The variation of accuracy and correctness based on the number of observation mixtures. How does adding noise affect our recognition accuracy (The experiment done in our last post involves clean test input) The confusion matrix of our test results     […]

Read more "Force Alignment using HMM 2"

Spectrum Analysis of EEG Signal

Introduction By using EEG to collect EEG data from our brain, sometimes we will need to know which frequency band does our signal fall in to provide more features and information for later tasks. In this experiment, we are about to analyze a signal using Fast Fourier Transform (FFT) and Power Spectral Density (PSD). There […]

Read more "Spectrum Analysis of EEG Signal"